Exercise 4

(a) Show that the nonlinear equation

$$
u^{2} u_{x x}+2 u_{x} u_{y} u_{x y}-u^{2} u_{y y}=0
$$

is hyperbolic for every solution $u(x, y)$.
(b) Show that the nonlinear equation for the velocity potential $u(x, y)$

$$
\left(1-u_{x}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(1-u_{y}^{2}\right) u_{y y}=0
$$

in certain kinds of compressible fluid flow is (i) elliptic, (ii) parabolic, or (iii) hyperbolic for those solutions such that $|\nabla u|<1,|\nabla u|=1$, or $|\nabla u|>1$.

Solution

Part (a)
$u^{2} u_{x x}+2 u_{x} u_{y} u_{x y}-u^{2} u_{y y}=0$
Comparing this equation with the general form of a second-order PDE,
$A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G$, we see that $A=u^{2}, B=2 u_{x} u_{y}, C=-u^{2}, D=0$, $E=0, F=0$, and $G=0$. To show the equation is hyperbolic, we have to consider the discriminant, $B^{2}-4 A C$:

$$
\begin{aligned}
B^{2}-4 A C & =\left(2 u_{x} u_{y}\right)^{2}-4 u^{2}\left(-u^{2}\right) \\
& =\left(2 u_{x} u_{y}\right)^{2}+4 u^{4} \\
& =\underbrace{\left(2 u_{x} u_{y}\right)^{2}}_{\geq 0}+\underbrace{\left(2 u^{2}\right)^{2}}_{>0} .
\end{aligned}
$$

Since the discriminant is a sum of squares, it must be greater than 0 . Therefore, the PDE is hyperbolic for all $u(x, y)$.

Part (b)
$\left(1-u_{x}^{2}\right) u_{x x}-2 u_{x} u_{y} u_{x y}+\left(1-u_{y}^{2}\right) u_{y y}=0$
In this case, $A=1-u_{x}^{2}, B=-2 u_{x} u_{y}, C=1-u_{y}^{2}, D=0, E=0, F=0$, and $G=0$. The discriminant is given by

$$
\begin{aligned}
B^{2}-4 A C & =4 u_{x}^{2} u_{y}^{2}-4\left(1-u_{x}^{2}\right)\left(1-u_{y}^{2}\right) \\
& =4\left(u_{x}^{2}+u_{y}^{2}-1\right)
\end{aligned}
$$

$B^{2}-4 A C=4\left(u_{x}^{2}+u_{y}^{2}-1\right)$, can be positive, zero, or negative, depending on whether $u_{x}^{2}+u_{y}^{2}-1>0, u_{x}^{2}+u_{y}^{2}-1=0$, or $u_{x}^{2}+u_{y}^{2}-1<0$, respectively. That is,

The PDE is $\begin{cases}\text { hyperbolic } & \text { if } u_{x}^{2}+u_{y}^{2}>1 . \\ \text { parabolic } & \text { if } u_{x}^{2}+u_{y}^{2}=1 . \\ \text { elliptic } & \text { if } u_{x}^{2}+u_{y}^{2}<1 .\end{cases}$

Note that $u_{x}^{2}+u_{y}^{2}=|\nabla u|^{2}$, and if we take the square root of both sides of each condition, we get the desired result.

$$
\text { The PDE is } \begin{cases}\text { hyperbolic } & \text { if }|\nabla u|>1 \\ \text { parabolic } & \text { if }|\nabla u|=1 . \\ \text { elliptic } & \text { if }|\nabla u|<1\end{cases}
$$

